A High-Throughput, Field-Based Phenotyping Technology for Tall Biomass Crops.

نویسندگان

  • Maria G Salas Fernandez
  • Yin Bao
  • Lie Tang
  • Patrick S Schnable
چکیده

Recent advances in omics technologies have not been accompanied by equally efficient, cost-effective, and accurate phenotyping methods required to dissect the genetic architecture of complex traits. Even though high-throughput phenotyping platforms have been developed for controlled environments, field-based aerial and ground technologies have only been designed and deployed for short-stature crops. Therefore, we developed and tested Phenobot 1.0, an auto-steered and self-propelled field-based high-throughput phenotyping platform for tall dense canopy crops, such as sorghum (Sorghum bicolor). Phenobot 1.0 was equipped with laterally positioned and vertically stacked stereo RGB cameras. Images collected from 307 diverse sorghum lines were reconstructed in 3D for feature extraction. User interfaces were developed, and multiple algorithms were evaluated for their accuracy in estimating plant height and stem diameter. Tested feature extraction methods included the following: (1) User-interactive Individual Plant Height Extraction (UsIn-PHe) based on dense stereo three-dimensional reconstruction; (2) Automatic Hedge-based Plant Height Extraction (Auto-PHe) based on dense stereo 3D reconstruction; (3) User-interactive Dense Stereo Matching Stem Diameter Extraction; and (4) User-interactive Image Patch Stereo Matching Stem Diameter Extraction (IPaS-Di). Comparative genome-wide association analysis and ground-truth validation demonstrated that both UsIn-PHe and Auto-PHe were accurate methods to estimate plant height, while Auto-PHe had the additional advantage of being a completely automated process. For stem diameter, IPaS-Di generated the most accurate estimates of this biomass-related architectural trait. In summary, our technology was proven robust to obtain ground-based high-throughput plant architecture parameters of sorghum, a tall and densely planted crop species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High-Throughput, Field-Based Phenotyping Technology for Tall Biomass Crops1[OPEN]

Recent advances in omics technologies have not been accompanied by equally efficient, cost-effective, and accurate phenotyping methods required to dissect the genetic architecture of complex traits. Even though high-throughput phenotyping platforms have been developed for controlled environments, field-based aerial and ground technologies have only been designed and deployed for short-stature c...

متن کامل

Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation

To extend agricultural productivity by knowledge-based breeding and tailor varieties adapted to specific environmental conditions, it is imperative to improve our ability to assess the dynamic changes of the phenome of crops under field conditions. To this end, we have developed a precision phenotyping platform that combines various sensors for a non-invasive, high-throughput and high-dimension...

متن کامل

Conventional and hyperspectral time-series imaging of maize lines widely used in field trials

Background Maize (Zea mays ssp. mays) is 1 of 3 crops, along with rice and wheat, responsible for more than one-half of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping are currently the largest constraints on plant breeding efforts. Datasets linking new types ...

متن کامل

Infra-Red Thermography as a High-Throughput Tool for Field Phenotyping

The improvements in crop production needed to meet the increasing food demand in the 21st Century will rely on improved crop management and better crop varieties. In the last decade our ability to use genetics and genomics in crop science has been revolutionised, but these advances have not been matched by our ability to phenotype crops. As rapid and effective phenotyping is the basis of any la...

متن کامل

High-Throughput Phenotyping to Detect Drought Tolerance QTL in Wild Barley Introgression Lines

Drought is one of the most severe stresses, endangering crop yields worldwide. In order to select drought tolerant genotypes, access to exotic germplasm and efficient phenotyping protocols are needed. In this study the high-throughput phenotyping platform "The Plant Accelerator", Adelaide, Australia, was used to screen a set of 47 juvenile (six week old) wild barley introgression lines (S42ILs)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 174 4  شماره 

صفحات  -

تاریخ انتشار 2017